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Abstract
The radial distribution function of two-dimensional Yukawa systems has been
computed with the hypernetted chain equations and compared with molecular
dynamics simulations. A comparison is also made with similar quantities
in three-dimensional systems. The importance of the bridge function in two
dimensions is illustrated. Collective behaviour is described in terms of the
dynamic structure factor S(q, ω); inclusion of the local field correction G(q,ω)

incorporates physics beyond the random phase approximation. Simulation
results are compared with renormalized mean-field approximations G(q,ω) ≈
G(q, 0) and G(q,ω) ≈ G(q,∞). These approximations fail to capture details
of the spectrum.

PACS numbers: 52.27.Gr, 52.27.Lw, 62.22.+m

1. Introduction

A variety of strongly coupled Coulomb systems confined to a single layer exist; examples
are electrons trapped on helium surfaces [1] or within semiconductor heterojunctions [2],
and monolayer dusty plasmas [3]. Structural properties of the pure Coulomb case have been
considered previously [4], as have the collective properties [5]. Since the statistical mechanics
of many-body systems can depend on the dimensionality of the system, it is of interest to
explore the properties of two-dimensional (2D) Yukawa systems, whose three-dimensional
(3D) counterparts have recently received considerable attention. For example, structural
properties [6] and the phase diagram [7] have been considered, as have the transport coefficients
of diffusion [8] and viscosity [9]. The collective properties, including both longitudinal and
transverse modes, have been elucidated using a variety of techniques [10–13]. Here we focus
on the radial distribution function and the dynamic structure factor of 2D Yukawa systems and
draw comparisons to 3D systems.
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For screened systems we consider N particles confined to an area A with a real density
n = N/A. In two dimensions we define the temperature as kBT = m

2

〈
v2

x + v2
y

〉 ≡ β−1. The
pair interaction between particles is taken to be

βv(r) = �

r
exp(−κr) u(q) ≡ βnv(q) = 2�√

κ2 + q2

in real and Fourier space, respectively. Lengths are in units of the ion-circle radius
a = (πn)−1/2. The dimensionless coupling parameter � and screening parameter κ are
defined as

� = βQ2

a
κ = a

λ
. (1)

The physical screening length is λ and Q is the average charge. For typical dust grains, Q is
negative and of order Q ∼ −103−4|e| and the background plasma screens the grains, which is
characterized by λ [14].

The radial distribution function g(r) is computed both with integral equations and with
molecular dynamics simulation and the results are compared for 2D and 3D systems in
section 2. This quantity forms the basic ingredient for describing the effects of strong coupling
on the density fluctuation spectrum S(q, ω), which is considered in section 3.

2. Structural properties

The thermodynamic properties of many-body systems describable in terms of a pair potential
can be computed from knowledge of the radial distribution function g(r) [15]. The formally
exact integral equations for g(r) are

ln g(r) = −βv(r) + h(r) − c(r) + B(r)

h(r) = c(r) +
1

π

∫
d2r ′ h(|r − r ′|)c(r ′) (2)

g(r) = h(r) + 1.

Equations (2) are adapted to the two-dimensional Yukawa case in the hypernetted chain (HNC)
approximation, in which the bridge function is neglected (B(r) = 0); this adaptation occurs
in the Fourier transform of the middle equation, which now involves cylindrical, rather than
spherical, Bessel functions [16]. The static structure factor S(q) is an important related
quantity, and is related to g(r) through a Fourier transform relation

S(q) = 1 +
1

π

∫
d2r[g(r) − 1] e−iq·r. (3)

This quantity will play an important role in describing the spectrum of density fluctuations.
We have compared solutions of equations (2) to molecular dynamics results and find good

agreement for weak to moderate coupling. A typical result for strong coupling conditions
� = 100 and κ = 2 is shown in figure 1 for both 2D and 3D. These parameters are chosen
because they both correspond to possible conditions in a dusty plasma and to illustrate the
physics in an intermediate regime with neither very weak nor very strong coupling. (In
3D the Yukawa parameters are defined analogously to equations (1) [7].) These parameters
correspond to an effective coupling1 of �eff ≡ �e−κ ≈ 13.5. It is clear that the peak structure is
more pronounced in 2D (red curves) than in 3D (blue curves) for the same Yukawa parameters,
1 This definition of effective coupling is used only to illustrate that the large bare coupling of � = 100 is reduced by
the effects of screening, as characterized by κ = 2; in fact, there is no unique definition of the effective coupling. For
a discussion of effective coupling parameters see, for example, the first citation of [9].
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Figure 1. Radial distribution functions g(r) for Yukawa parameters � = 100 and κ = 2.
Comparison is made between 2D (red curves) and 3D (blue curves) systems; both HNC and MD
results are shown.

and that the corresponding 2D HNC calculation is less accurate. Note that, although the HNC
underestimates the first peak in 3D, the remaining peaks are fairly well described, in contrast
to the 2D result. This point is obviously related to the fact that the one-component plasma
(OCP) melting transition for 2D systems [17] �2D

m ≈ 130 tends to occur at lower values of �

than for 3D systems [7] �3D
m ≈ 170.

3. Dynamical properties

Given knowledge of the structural properties, we can now compute collective properties. The
collective modes are described generally in terms of the dynamic structure factor (DSF) and
current autocorrelation functions. After a general discussion, the simplest approximation, the
random phase approximation (RPA), is presented. Then, the local field correction in two static
approximations is introduced.

3.1. General definitions

The dynamics of the 2D Yukawa system can be characterized by the autocorrelation function
of density fluctuations δn(q, t) in mode q, namely

S(q, ω) = 1

Nω0

∫ ∞

−∞
dt〈δn(q, t)δn(−q, 0)〉 eiωt . (4)

Here time and length quantities are written in terms of the frequency ω0 =
√

2πnQ2

am
and length a,

respectively. This quantity, the DSF, can be related to the density response function χ(q, ω)

through the fluctuation–dissipation theorem

S(q, ω) = − 2

βnω
Im[χ(q, ω)]. (5)

An important sum rule relates the DSF to the static structure factor

〈ω0〉 =
∫ ∞

−∞

dω

2π
S(q, ω) = S(q). (6)
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This relation provides a constraint on the dynamics through the known static properties
of equation (3). There are two other ‘basic’ sum rules that further constrain approximate
dynamical theories. These are the f-sum rule,

〈ω2〉 =
∫ ∞

−∞

dω

2π
ω2S(q, ω) = q2

2�
(7)

and the fourth-moment sum rule

〈ω4〉 =
∫ ∞

−∞

dω

2π
ω4S(q, ω)

= 3q4

(2�)2
+

q2

2π(2�)

∫
d2r g(r)[1 − e−iqx]

∂2

∂x2

(
e−κr

r

)
.

The importance of these sum rules is that exact static properties constrain dynamical theories;
below, the sum rules will be related to the frequency response.

It is convenient to parametrize the density response function as

χ(q, ω) = χ(0)(q, ω)

1 − v(q)[1 − G(q,ω)]χ(0)(q, ω)
(8)

where G(q,ω) is the dynamic local field correction (DLFC) [18]. The ideal gas response
function is given by

χ(0)(q, ω) = −βn

[
1 + i

√
π�

ω

q
W

(√
�

ω

q

)]

where the function

W(z) = e−z2
erfc(−iz)

is related to the complex error function [20]. Note that equation (8) is exact by definition;
therefore G(q,ω) contains all physics beyond the RPA.

3.2. Random phase approximation

For weakly coupled systems, the simplest approximation to equation (8) corresponds to

χ(q, ω) = χ(0)(q, ω)

1 − v(q)χ(0)(q, ω)

which is the RPA (Vlasov) result, defined as G(q,ω) = 0. In the limit ω → ∞ and with
Im[χ(0)(q, ω)] ≈ 0, we can find the approximate dispersion relation

ωRPA(q) = ω0
q

(q2 + κ2)1/4
(9)

which is acoustic in the long-wavelength limit. (Note that for the pure OCP, ωOCP(q) = ω0
√

q .)

3.3. Local field corrections

It is possible to extend the applicability of the RPA result into the strong coupling regime by
including the DLFC. Unfortunately, it is difficult to construct the DLFC, even approximately.
Here two static forms are used that satisfy two, but different, sum rules.

As a first approximation, we will enforce the 〈ω0〉 and 〈ω2〉 sum rules. The 〈ω2〉 sum
rule is trivially satisfied by the form of equation (8). The 〈ω0〉 sum rule can be enforced with
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a combination of equations (5) and (6) with the Kramers–Kronig relation for χ(q, ω) [19] to
yield

G(q, 0) = 1 − 1

u(q)

(
1

S(q)
− 1

)
. (10)

This approximation is referred to as the static local field correction (SLFC) approximation,
and obviously treats strong coupling behaviour in a low-frequency approximation. The
SLFC is equivalent to replacing the pair interaction by the direct correlation function, as
u(q) → −c(q)/π .

If the sum rules 〈ω2〉 and 〈ω4〉 are used, a second approximation is

G(q,∞) = − 1

2πq

∫
d2r h(r)[1 − e−iqx ]

∂2

∂x2

(
e−κr

r

)
(11)

which treats strong coupling behaviour in a high-frequency approximation. We will refer to
this result as the high-frequency local field correction (HFLFC).

It is important to point out that equations (10) and (11) are renormalized mean field
results in the sense that the pair interaction is replaced by an effective interaction that obeys
specific sum rules (to the accuracy that g(r) is known) but the dynamics is still governed
by the RPA; therefore, the only damping mechanism included is the Landau damping. This
can be seen by noting that both the SLFC and the HFLFC approximations can be obtained
from the Vlasov equation with static effective interactions of the form v(q) [1 − G(q, 0)] and
v(q) [1 − G(q,∞)], respectively; the underlying kinetic equation is not modified, but the
pair interaction is. An extension of the RPA dynamics requires a frequency-dependent DLFC
G(q,ω). Although we do not consider it here, it should be mentioned that a simple DLFC
can be constructed that satisfies all three sum rules 〈ω0,2,4〉 [21].

4. Molecular dynamics simulation

Molecular dynamics (MD) simulations have been performed to assess the accuracy of
equations (10) and (11) for the case � = 100 and κ = 2. The simulations were performed
in a square cell with periodic boundary conditions; no Ewald sum was needed for the large
κ value considered. To obtain the spectrum at long wavelengths, which from equation (9)
also corresponds to low frequencies, simulations were performed with N = 500 particles for
a time interval of T = 2400ω−1

0 . To ensure accurate energy conservation, a time step of

t = 0.03ω−1

0 was used. After an initial equilibration phase, simulations were performed in
the microcanonical ensemble.

In addition to energy conservation, the accuracy of the simulation and analysis was also
confirmed by checking both the f-sum rule, equation (7), and the continuity equation, which
connects the density fluctuation spectrum of equation (4) to the spectrum of longitudinal
current fluctuations j (q, t) ≡ q̂ · j(q, t) through

CL(q, ω) = 1

N

∫ ∞

−∞
dt〈j (q, t)j (−q, 0)〉 eiωt = ω2

q2
S(q, ω).

The f-sum rule was satisfied to within ∼23% for small q and ∼3% for large q; the error for
small q is likely due to insufficient frequency samping near the strong peaks. The difference
between q2CL(q, ω)/ω2 and S(q, ω) was much less than a per cent.

5. Results

The spectrum ω0S(q, ω) is shown in figure 2 for wavevectors q = 0.159 (red), q = 0.476
(green) and q = 0.793 (blue) from MD and the theoretical model of equation (10). The model
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Figure 2. Dynamic structure factors computed in the approximation G(q,ω) ≈ G(q, 0), as
compared with (2D) MD for Yukawa plasma parameters � = 100 and κ = 2. The wavevectors
are q = 0.159 (red), q = 0.476 (green) and q = 0.793 (blue).

of equation (11) is not shown due to its inaccuracy—see the dispersion relation discussion
below. All theoretical models greatly underestimate the width of the spectrum, which indicates
an important deficit of the renormalized mean-field approach. However, the dispersion relation
is predicted fairly well, as estimated by

ω(q; 0) = ω0
q
√

1 − G(q, 0)

(q2 + κ2)1/4
(12)

ω(q; ∞) = ω0
q
√

1 − G(q,∞)

(q2 + κ2)1/4
. (13)

These dispersion relations are the approximate poles of equation (8), as obtained by expanding
χ(0)(q, ω) at high frequency and neglecting Im[χ(0)(q, ω)]. The latter estimate, equation (13),
can be shown to be closely related to mode dispersion in amorphous solids and liquids [22], and
is sometimes referred to as the quasilocalized charge approximation [23]. Here equation (13)
extends those results to the 2D Yukawa case. The dispersion relation is shown in figure 3.
The dispersion relation has been obtained both with the simple estimates of equations (12) and
(13), and from the peak of S(q, ω) from equation (5) as evaluated in the SLFC approximation.
The outcome that equation (12) yields superior results suggests that caging is relatively weak
for this particular case. Note that the estimate of equation (12) predicts frequencies below the
actual peak frequencies of S(q, ω). It is worth noting that the estimates of equations (12) and
(13) will yield slightly lower frequencies if a bridge function B(r) is included in calculation
of equations (2). Currently the 2D Yukawa bridge function is not known, although it is
approximately known for 3D Yukawa systems [6].

The transverse current autocorrelation function

CT (q, ω) = 1

N

∫ ∞

−∞
dt〈jT (q, t)jT (−q, 0)〉 eiωt (14)

where jT (q, t) is transverse to q, was also computed by MD. Only the ω = 0 diffusive
mode was observed, except at the shortest wavelength q = 0.793 where a propagating mode
appeared. A single square is shown in figure 3; this behaviour is qualitatively consistent with
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Figure 3. Dispersion relation for the longitudinal mode for � = 100 and κ = 2. Blue points are
(2D) MD results with error bars indicating the width at half the peak value. The curves correspond
to the theoretical predictions: solid red is the RPA dispersion relation; dashed green is the HFLFC
dispersion relation, dotted black is the SLFC dispersion relation; black triangles are the peaks of
S(q,ω) in the SLFC approximation and the dark red square is the appearance of the transverse
mode.

predictions made for 3D systems [11]. This result suggests that, for the specific case being
considered, all other wavevectors q < 0.793 are in the hydrodynamic limit.

6. Conclusion

We have shown that the HNC integral equations approximately describe the structure of the
2D Yukawa fluid, although a bridge function B(r) should be used for fluids near freezing. For
a consistent set of Yukawa parameters we have found that the 2D fluid has more pronounced
peaks in the radial distribution function than the corresponding 3D fluid.

We have also calculated the spectrum of density and current fluctuations in two
renormalized mean-field approximations, and these results have been compared with MD
results. We find that, for the case � = 100 and κ = 2, the theoretical models cannot
accurately predict the spectrum, although the dispersion is fairly well described by the SLFC.
The dispersion relation has been shown to be somewhat sensitive to using the peaks of S(q, ω)

versus simple estimates. The error in the width is a consequence of neglecting damping in the
mean-field models, which only treat Landau damping. Extensions of this mean-field approach
can be made by introducing transport information [10, 11]; however, transport properties (e.g.,
viscosity) of 2D Yukawa systems are not yet known.
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